

Understanding Acoustic Scale Measurements

The One Sided Fight Against Λ

Ewan Chamberlain
Supervisor: Antony Lewis

University of Sussex

Friday 04 April 2025

Lewis & Chamberlain, arxiv:2412.13894

Understanding Acoustic Scale Measurements

The One Sided Fight Against Λ

Ewan Chamberlain
Supervisor: Antony Lewis

University of Sussex

Friday 04 April 2025

Lewis & Chamberlain, arxiv:2412.13894

Now with DESI DR2!

Outline

1 Background

2 Constraints

3 Results

4 Conclusions

Outline

1 Background

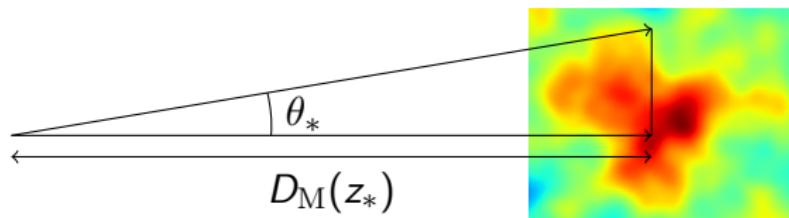
2 Constraints

3 Results

4 Conclusions

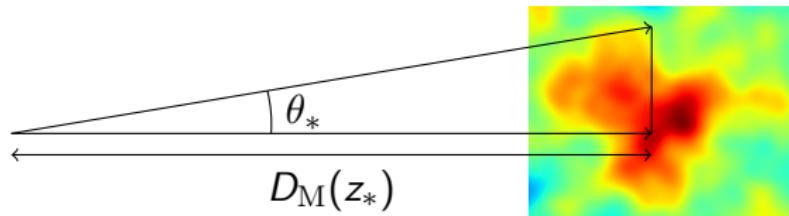
CMB and BAO

- Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO) define “standard rulers”.



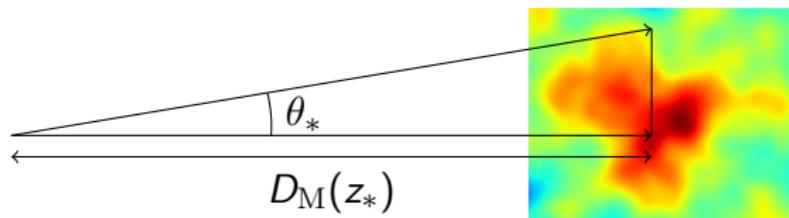
CMB and BAO

- Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO) define “standard rulers”.
- CMB constrains the angular size of the sound horizon θ_* .



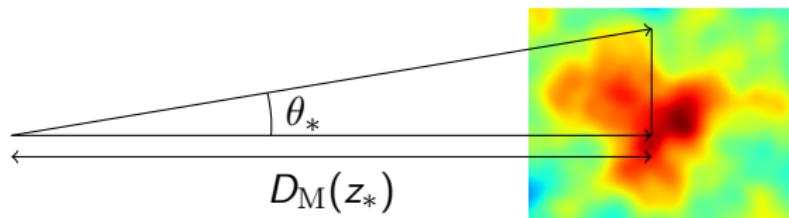
CMB and BAO

- Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO) define “standard rulers”.
- CMB constrains the angular size of the sound horizon θ_* .
- Measured to within 0.03% by *Planck*.

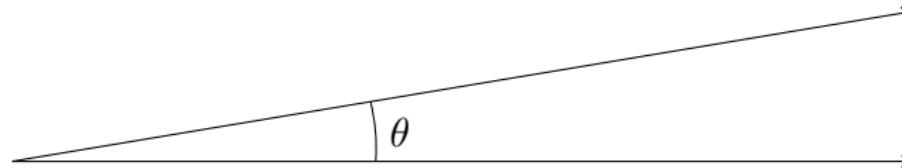


CMB and BAO

- Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO) define “standard rulers”.
- CMB constrains the angular size of the sound horizon θ_* .
- Measured to within 0.03% by *Planck*.
- BAO measurements detect lower redshift imprints on galaxies.

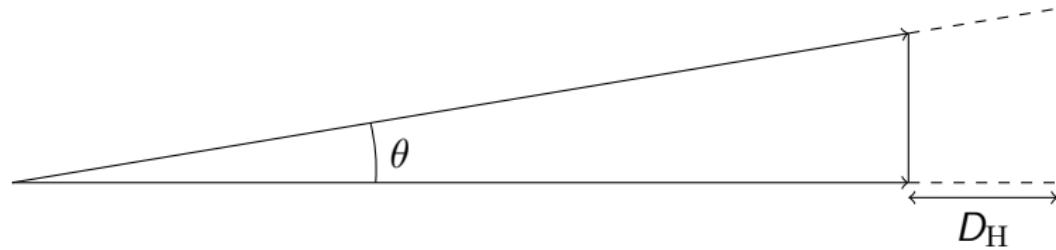


BAO Measurements



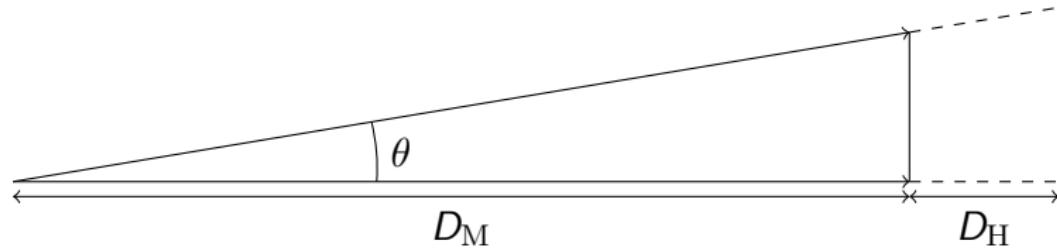
BAO Measurements

- Line-of-sight: Hubble distance $D_H(z) = c/H(z)$.



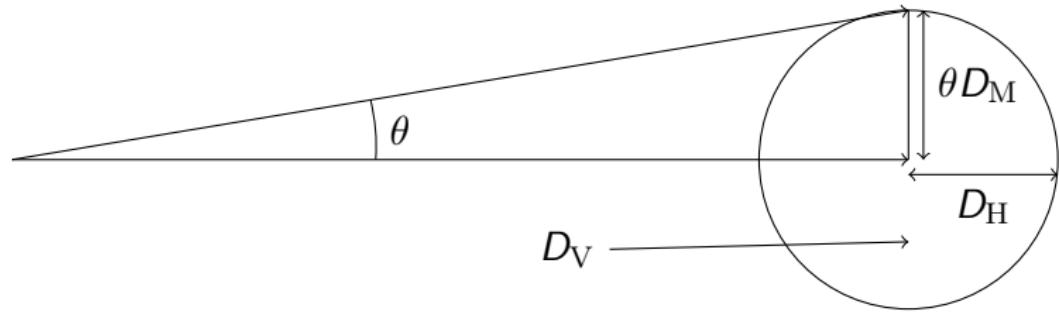
BAO Measurements

- Line-of-sight: Hubble distance $D_H(z) = c/H(z)$.
- Transverse: angular diameter distance $D_M(z) = c \int_0^z dz'/H(z')$.



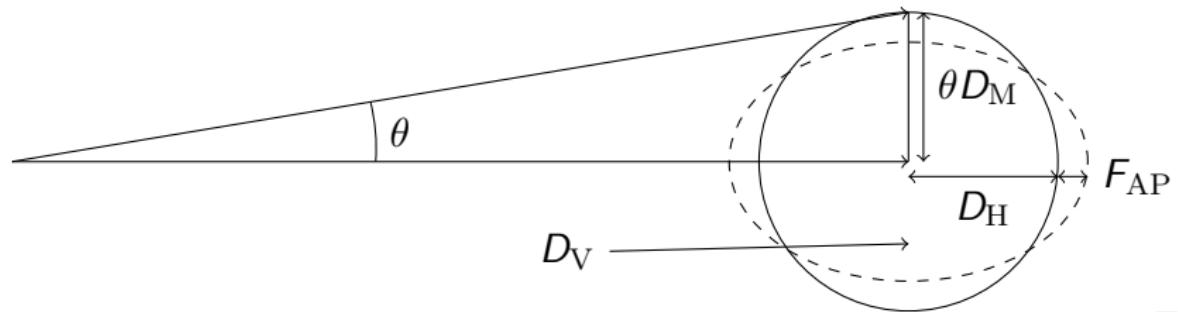
BAO Measurements

- Line-of-sight: Hubble distance $D_H(z) = c/H(z)$.
- Transverse: angular diameter distance $D_M(z) = c \int_0^z dz'/H(z')$.
- Angle-averaged BAO scale: $D_V(z) = [zD_M^2(z)D_H(z)]^{1/3}$.



BAO Measurements

- Line-of-sight: Hubble distance $D_H(z) = c/H(z)$.
- Transverse: angular diameter distance $D_M(z) = c \int_0^z dz'/H(z')$.
- Angle-averaged BAO scale: $D_V(z) = [zD_M^2(z)D_H(z)]^{1/3}$.
- Alcock-Paczynski parameter: $F_{AP}(z) = D_M(z)/D_H(z)$.



Dark Energy

- Accelerated expansion of the Universe discovered in 90s

Dark Energy

- Accelerated expansion of the Universe discovered in 90s
- GR's cosmological constant Λ ($w_\Lambda = -1$) used to explain this.

Dark Energy

- Accelerated expansion of the Universe discovered in 90s
- GR's cosmological constant Λ ($w_\Lambda = -1$) used to explain this.
- Other models e.g. scalar field quintessence, $w_0 w_a$ CDM:

Dark Energy

- Accelerated expansion of the Universe discovered in 90s
- GR's cosmological constant Λ ($w_\Lambda = -1$) used to explain this.
- Other models e.g. scalar field quintessence, $w_0 w_a$ CDM:

$$w(a) = p(a)/\rho(a) = w_0 + w_a(1 - a).$$

Null Energy Condition

- $w_0 w_a$ CDM not necessarily consistent with the Null Energy Condition (NEC).

Null Energy Condition

- $w_0 w_a$ CDM not necessarily consistent with the Null Energy Condition (NEC).
- $\forall k : g_{\mu\nu} k^\mu k^\nu = 0, T_{\mu\nu} k^\mu k^\nu \geq 0$ (arXiv:1401.4024)

Null Energy Condition

- $w_0 w_a$ CDM not necessarily consistent with the Null Energy Condition (NEC).
- $\forall k : g_{\mu\nu} k^\mu k^\nu = 0, T_{\mu\nu} k^\mu k^\nu \geq 0$ (arXiv:1401.4024)
- “Energy density cannot increase with expansion.”

Null Energy Condition

- $w_0 w_a$ CDM not necessarily consistent with the Null Energy Condition (NEC).
- $\forall k : g_{\mu\nu} k^\mu k^\nu = 0, T_{\mu\nu} k^\mu k^\nu \geq 0$ (arXiv:1401.4024)
- “Energy density cannot increase with expansion.”
- DESI+CMB+SNe prefers $w_0 w_a$ CDM over Λ CDM.

Outline

1 Background

2 Constraints

3 Results

4 Conclusions

Disclaimer!

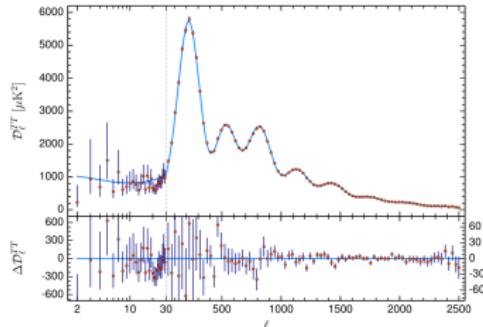
Maths!!!

(Skip to slide 13 for pretty pictures)

Constraints

From *Planck*:

- θ_* is fixed $\implies D_M(z_*)$ is fixed.
- $\Omega_b h^2$ and $\Omega_c h^2$ fixed

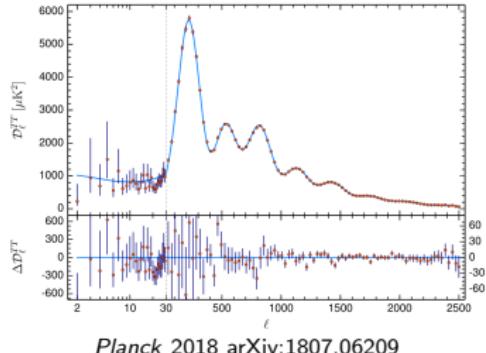


Planck 2018 arXiv:1807.06209

Constraints

From *Planck*:

- θ_* is fixed $\implies D_M(z_*)$ is fixed.
- $\Omega_b h^2$ and $\Omega_c h^2$ fixed



Planck 2018 arXiv:1807.06209

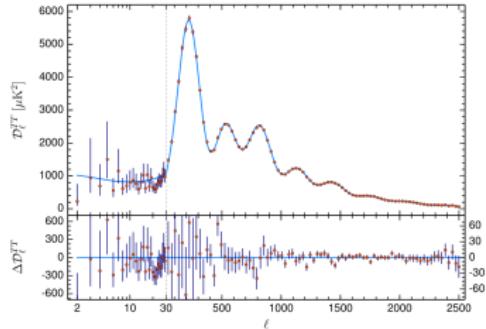
Consider:

- Null energy condition (NEC) requires that for all fluids $\rho + pc^2 = \rho(1 + w) \geq 0 \implies d\rho/dz \geq 0$.

Constraints

From *Planck*:

- θ_* is fixed $\implies D_M(z_*)$ is fixed.
- $\Omega_b h^2$ and $\Omega_c h^2$ fixed



Planck 2018 arXiv:1807.06209

Consider:

- Null energy condition (NEC) requires that for all fluids $\rho + pc^2 = \rho(1 + w) \geq 0 \implies d\rho/dz \geq 0$.

$$\int_0^{z_*} \frac{dz'}{\sqrt{\rho_m(z') + \rho_{de}(z')}} = \int_0^{z_*} \frac{dz'}{\sqrt{\rho_m(z') + \rho_\Lambda(z')}},$$
$$\implies \rho_{de}(0) < \rho_\Lambda.$$

Hubble Distance

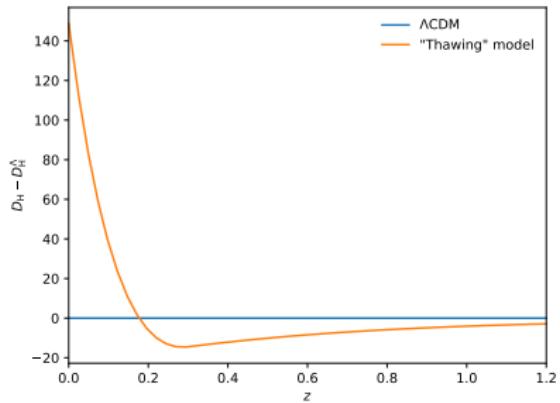
$$D_H(z) \propto \frac{1}{\sqrt{\rho_m(z) + \rho_{de}(z)}},$$

$$\frac{d\rho_{de}}{dz} \geq 0,$$

$$\rho_{de}(0) < \rho_\Lambda.$$

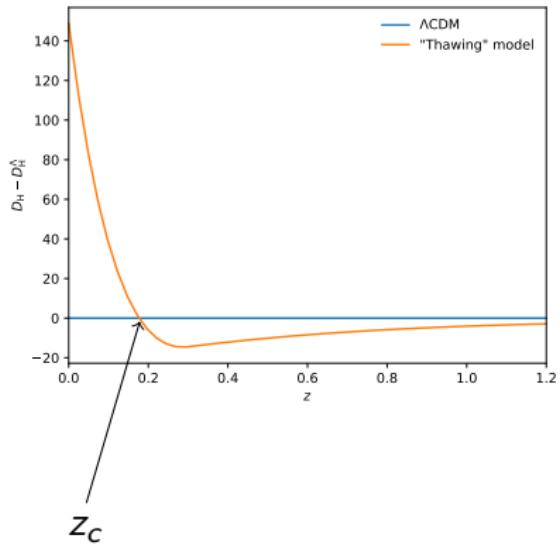
Hubble Distance

$$D_H(z) \propto \frac{1}{\sqrt{\rho_m(z) + \rho_{de}(z)}},$$
$$\frac{d\rho_{de}}{dz} \geq 0,$$
$$\rho_{de}(0) < \rho_\Lambda.$$



Hubble Distance

$$D_H(z) \propto \frac{1}{\sqrt{\rho_m(z) + \rho_{de}(z)}},$$
$$\frac{d\rho_{de}}{dz} \geq 0,$$
$$\rho_{de}(0) < \rho_\Lambda.$$



Inequalities

Inequality	Redshift
$D_H(0) \geq D_H^\Lambda(0)$	At $z = 0$
$D_H(z) \geq D_H^\Lambda(z)$	For $0 \leq z \leq z_c$
$D_H(z) \leq D_H^\Lambda(z)$	For $z_c \leq z \leq z_*$
$D_M(z) \geq D_M^\Lambda(z)$	For all z
$\frac{D_H}{D_H^\Lambda} \leq \frac{D_M}{D_M^\Lambda}$	For all z
$F_{AP} \geq F_{AP}^\Lambda$	For all z
$D_V \geq D_V^\Lambda$	For $0 \leq z \leq z_c$
$\frac{D_V}{D_V^\Lambda} \geq \left(\frac{F_{AP}}{F_{AP}^\Lambda}\right)^{-1/3}$	For $z > z_c$

Outline

1 Background

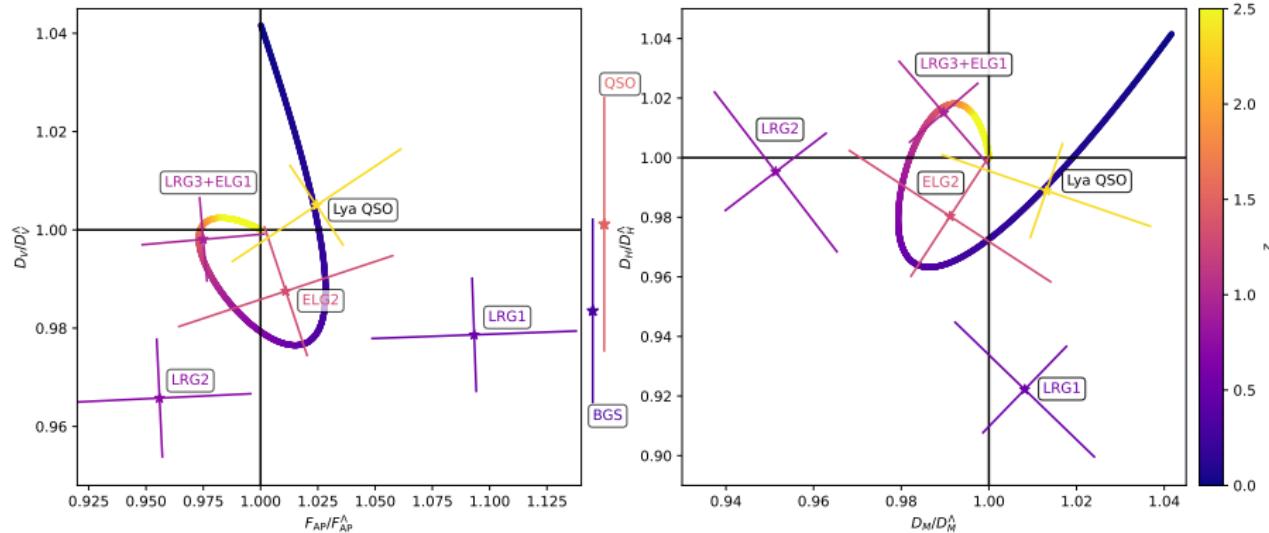
2 Constraints

3 Results

4 Conclusions

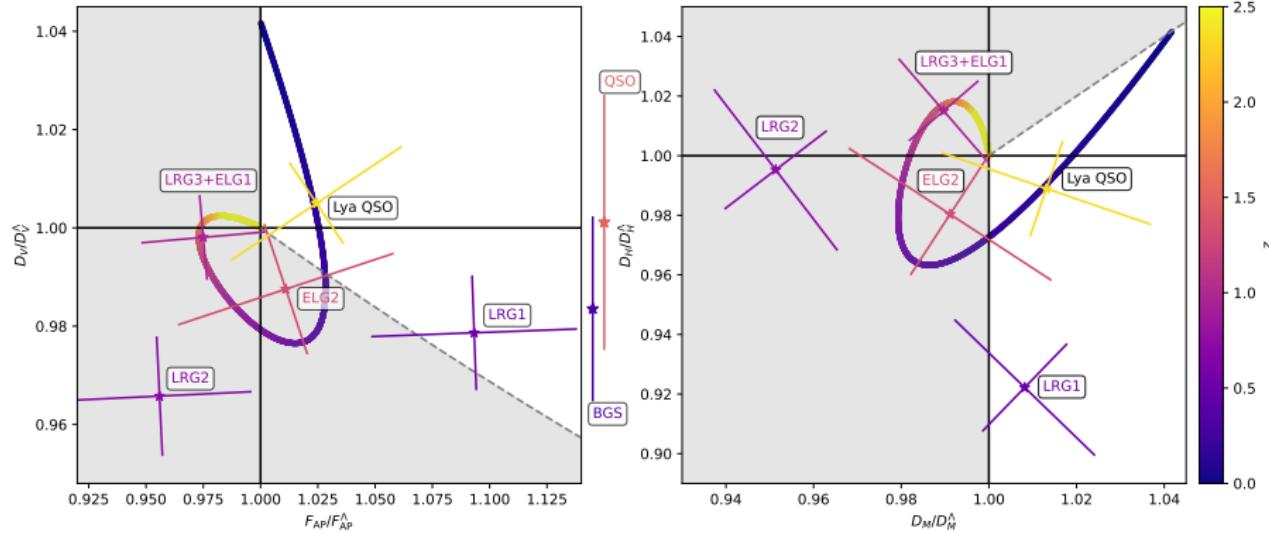
DESI BAO Measurements

$$w_0 = -0.45, w_a = -1.79$$



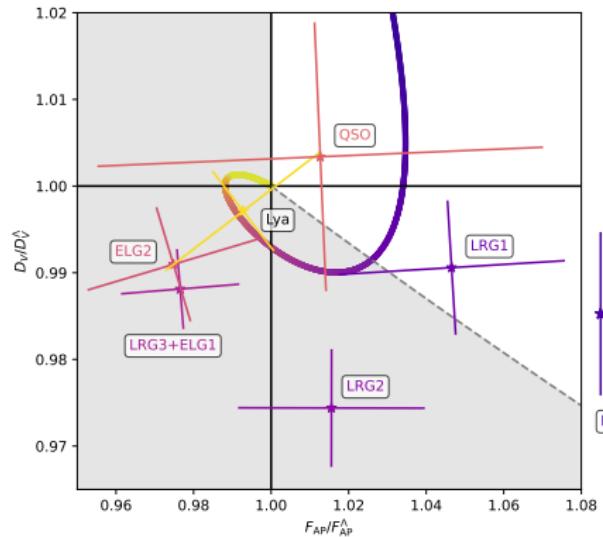
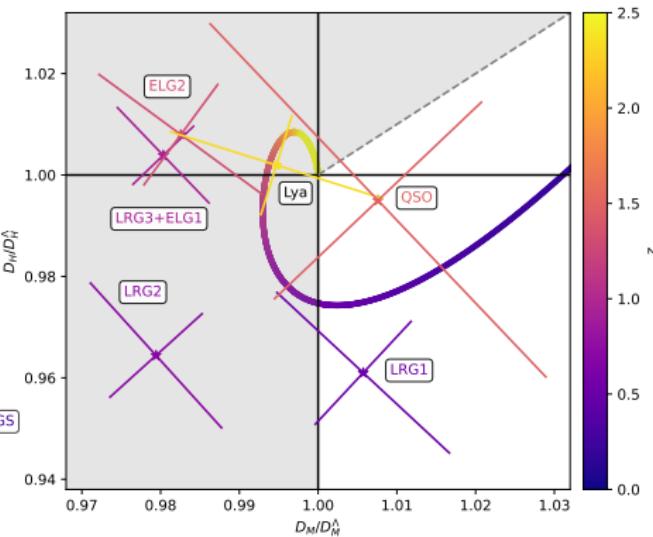
DESI BAO Measurements

$$w_0 = -0.45, w_a = -1.79$$

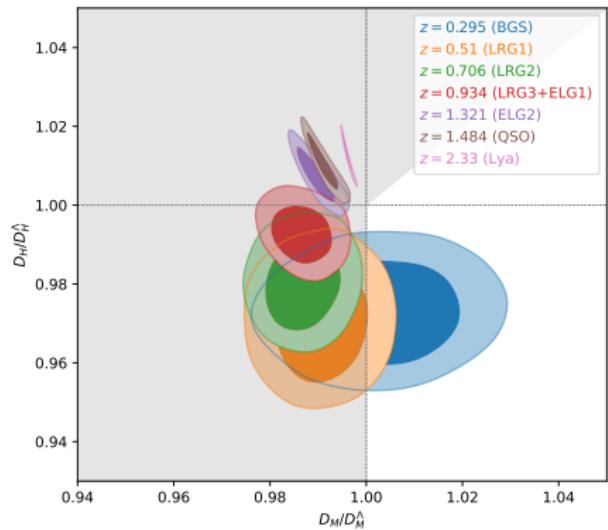


DESI BAO DR2 Measurements

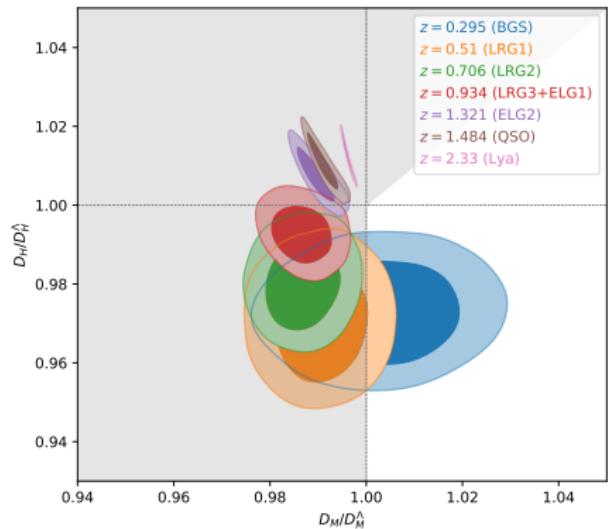
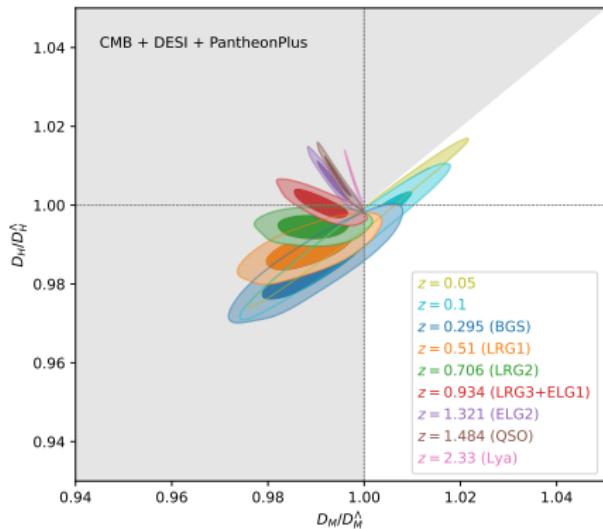
$$w_0 = -0.48, w_a = -1.34$$

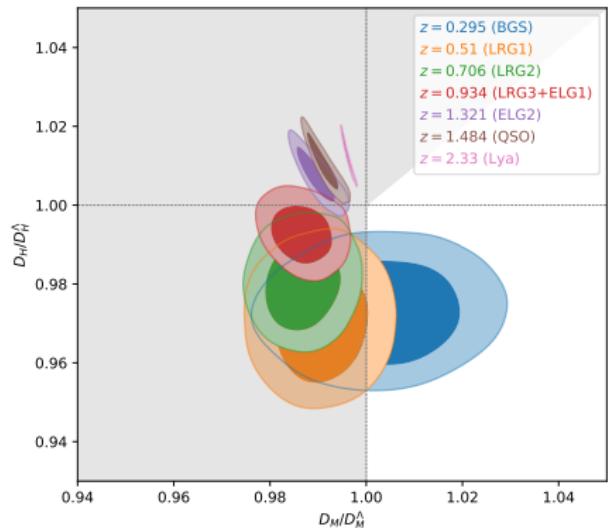
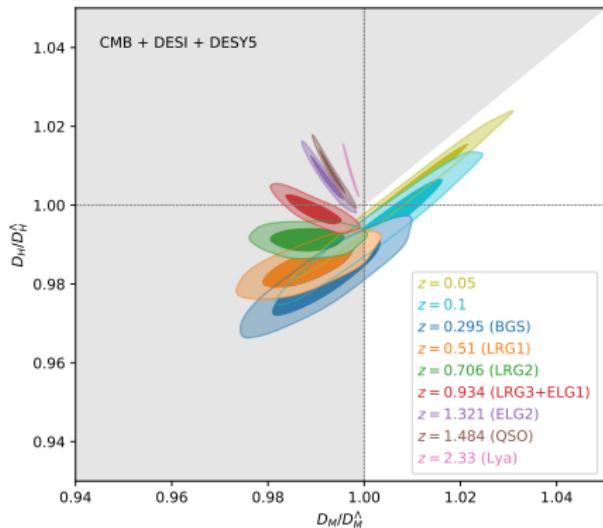


DESI BAO Measurements + SNe

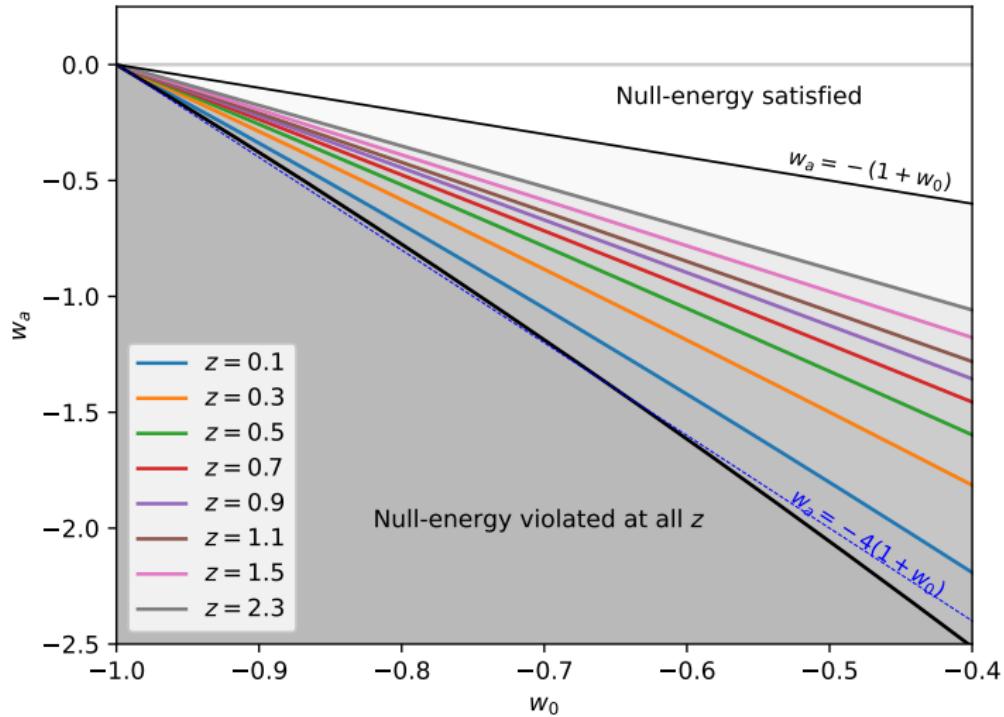


DESI BAO Measurements + SNe

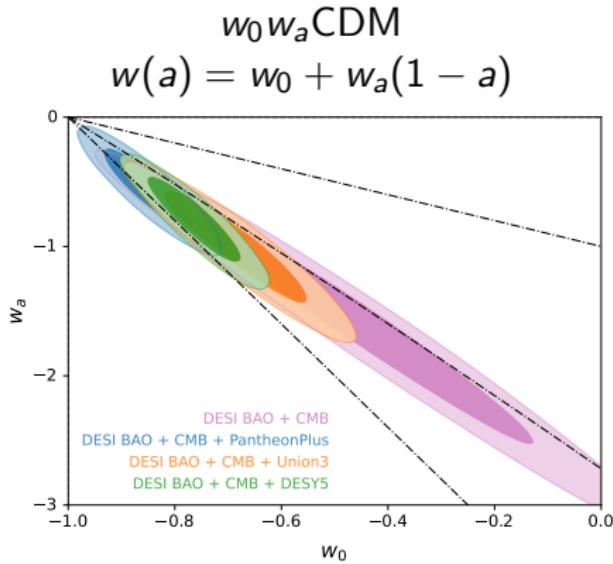


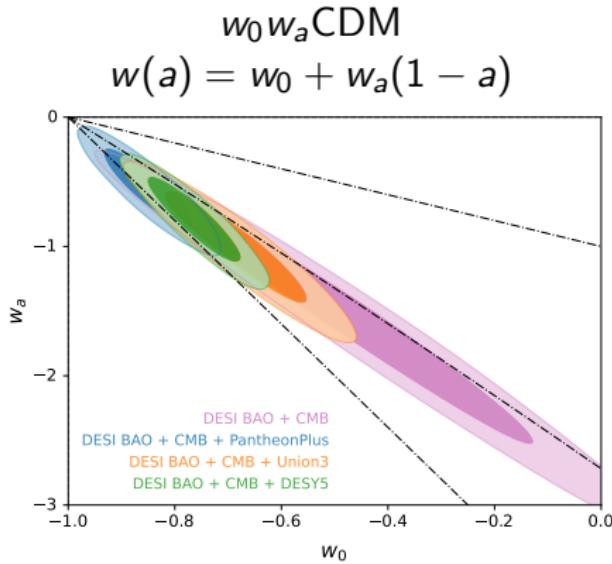


Redshift Bounds



$w_0 w_a$ CDM

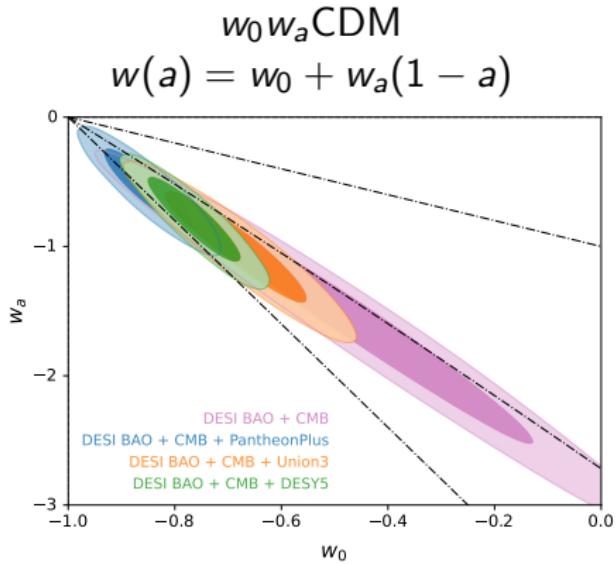
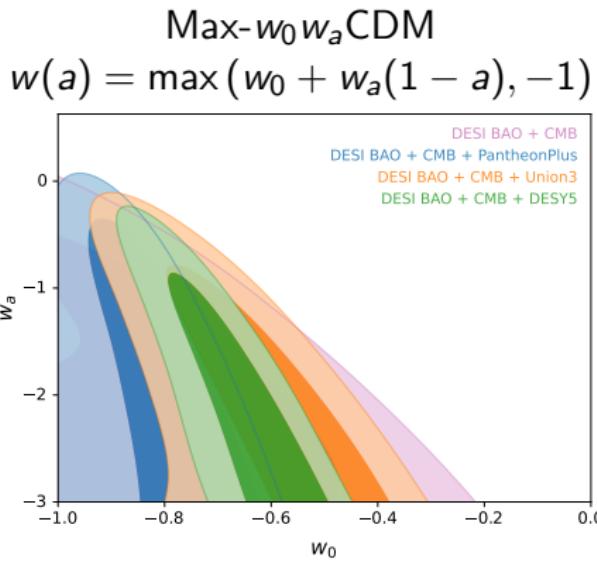




Max- $w_0 w_a$ CDM

$$w(a) = \max(w_0 + w_a(1 - a), -1)$$

$w_0 w_a$ CDM



Outline

1 Background

2 Constraints

3 Results

4 Conclusions

Conclusions

- NEC imposes strict conditions on BAO observables relative to Λ CDM.

Conclusions

- NEC imposes strict conditions on BAO observables relative to Λ CDM.
- These constraints rule out substantial regions of parameter space.

Conclusions

- NEC imposes strict conditions on BAO observables relative to Λ CDM.
- These constraints rule out substantial regions of parameter space.
- DESI+CMB measurements exhibit small tensions with Λ CDM that cannot be explained by any NEC-consistent DE model.

Conclusions

- NEC imposes strict conditions on BAO observables relative to Λ CDM.
- These constraints rule out substantial regions of parameter space.
- DESI+CMB measurements exhibit small tensions with Λ CDM that cannot be explained by any NEC-consistent DE model.
- Current acoustic data favour Λ CDM over other NEC-consistent models up to statistical fluctuations.

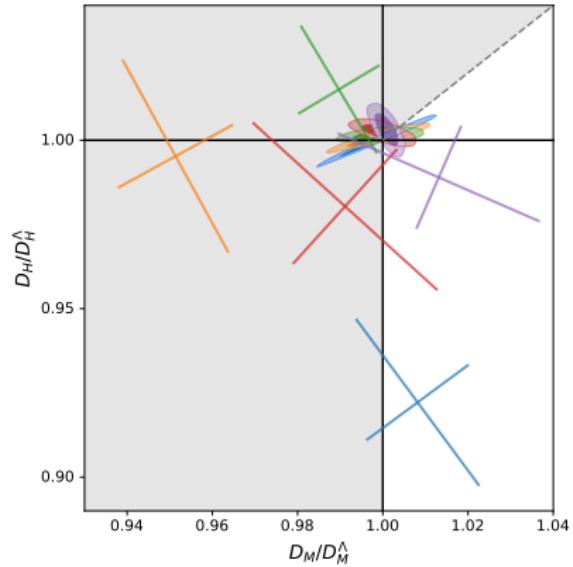
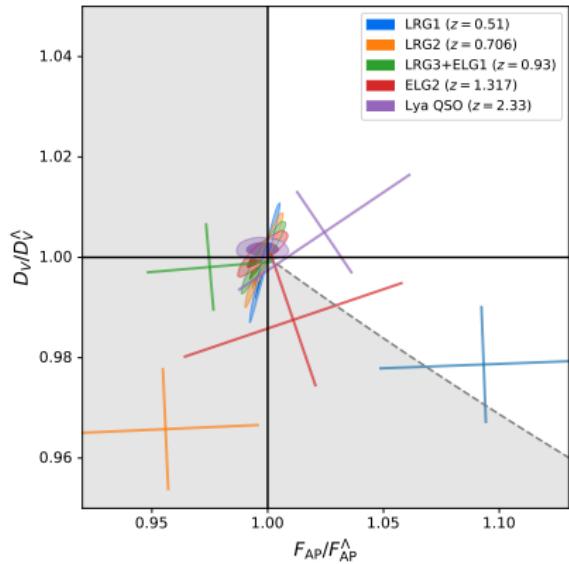
Conclusions

- NEC imposes strict conditions on BAO observables relative to Λ CDM.
- These constraints rule out substantial regions of parameter space.
- DESI+CMB measurements exhibit small tensions with Λ CDM that cannot be explained by any NEC-consistent DE model.
- Current acoustic data favour Λ CDM over other NEC-consistent models up to statistical fluctuations.

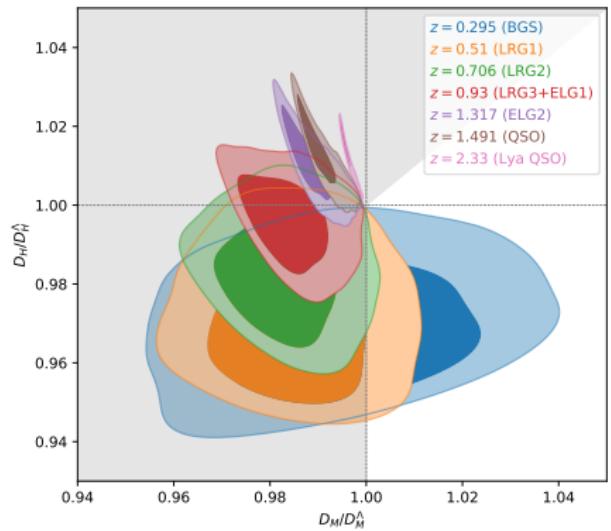
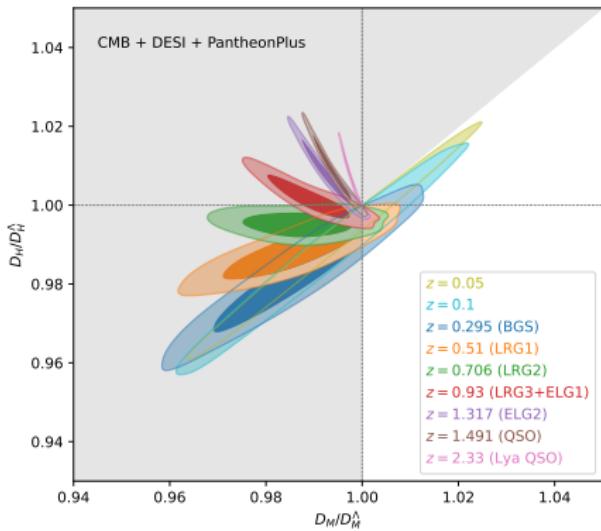
**OTHER NEC-
CONSISTENT
MODELS**

Λ CDM

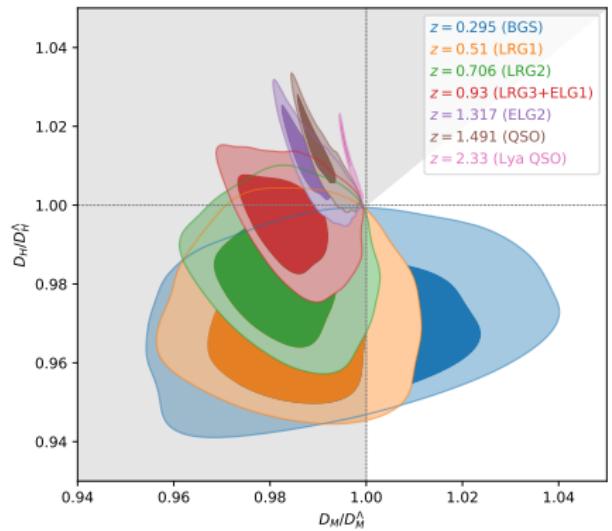
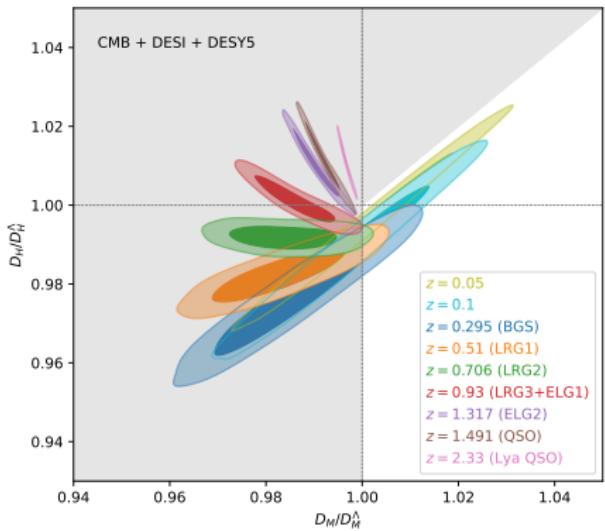
imgflip.com



DESI DR1 BAO Measurements + SNe

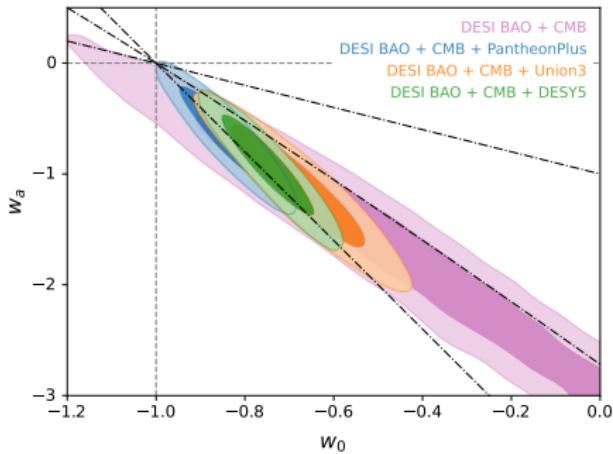


DESI DR1+DESY5



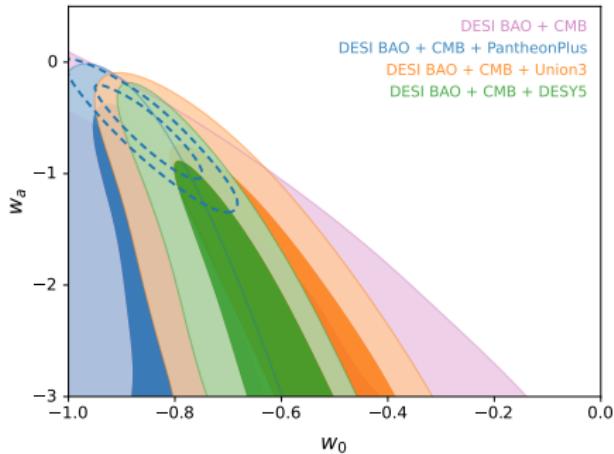
$$w_0 w_a \text{CDM}$$

$$w(a) = w_0 + w_a(1 - a)$$



$$\text{Max-}w_0 w_a \text{CDM}$$

$$w(a) = \max(w_0 + w_a(1 - a), -1)$$



Growth of Structure

